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Abstract

The typical approaches to formulating music theory mathematically neglect the fundamental
properties that allow us to use mathematical tools. We introduce these properties in the
form of sets, building four models for a so-called set of all sounds. Using this, we give a
mathematical framework that can be used to recreate music theoretical ideas. This further
allows for the creation of new musical ideas. After defining the set of all sounds, we can then
manipulate it to exhibit its basic mathematical properties and demonstrate how they can be
used to build up sheet music and other musical constructions.

1 Introduction

It is said that Pythagoras came back from Babylon and introduced harmony to Greece; and
so music was born. In this paper, we explore the mathematical properties of sound and music
for both the mathematician and the musician. It perhaps is not mathematically rigorous
enough for the mathematicians and perhaps it lacks the musical rigor found in typical music
theory papers. But it does possess an ability to express a combined viewpoint that is be-
coming more popular among those trying to understand this multidisciplinary topic. Some
may refer to it as Mathematical Music Theory, Mathemusic, Musical Set Theory, Axiomatic
Music Theory or simply Math and Music. We will refer to it as Musical Mathematics.

Perhaps the mathematician views his work as music- a beautiful piece of art that makes
one want to dance and sing aloud. And perhaps the musician views his work as mathematical-
a beautiful piece of exactness and structure that allows for much deeper exploration into his
work. But the humble objective for this paper is to show that while music and math are
both inherently beautiful, the combination is within a dimension that redefines beauty and
promotes the beauty of each individually. Further, the exploration of this is done from a
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perspective that is inherently mathematical, yet has the ability to appreciate the significance
of musical ideas. While this paper is simple enough so that anybody with a curious mind
can understand its ideas, it is written from the point of view of mathematics.

There is perhaps a need for a basis of reasoning for the purpose, motivation and signif-
icance of a presentation of seemingly unrelated fields. The interdisciplinary excursion on
its own might be enough to warrant an exploration into this topic, but a more reasonable
approach is the following proposal.

Exploration into this field is an exercise in the ability that mathematics has in explaining
nature. It further cements mathematics’ role into everyday life and provides further evi-
dence for its significance. This exercise is about using well-established mathematical tools
to explain something that is already known to have mathematical properties, but is perhaps
not fully developed. It is our belief that these tools are able to provide sufficient use in
establishing a foundation for a field that is becoming increasingly mathematical.

This reasoning on its own provides a tangible motivation to spark one’s scientific cu-
riosity. However, to give the reader more insight into the motivations of our work, we will
try to serve it with our anecdotal observations. Music has always been known to possess
properties of mathematics, whether we understand what those are or not. Further inquiry
into the methods of music, i.e., learning to play an instrument or learning how to read sheet
music, will, to the curious mind, create interest into the structure, the construction and the
reasoning to how music is built up into beautiful works of art. Questions arise- to the physi-
cist, perhaps they wonder how the sound is produced from different instruments or how the
wave mechanics interact to produce sound; to the mathematician, perhaps it is reasonable to
assume that they would inquire about the structure of sound elements and what properties
it possesses; to the musician, they might wonder how harmonies are formed and how the
fundamentals of music theory are constructed. These, we think, provide motivation for a
serious look into these ideas. Perhaps this may be insufficient for some, but it has provided
us with the right sparks to pursue them.

The significance of such ideas express the ability that mathematics has to connect seem-
ingly unrelated fields. Connecting fields that are disparate, and creating spheres of interdis-
ciplinary exploration, opens up other areas of work that give us a better understanding of the
world around us. It might provide the mathematician with more fundamental understand-
ing of musical ideas and perhaps provide the musician with a more mathematically-minded
approach to their work. Of course, one may argue that the intermingling between the arts
and sciences leaves both worse off at the end of such endeavors. But those with reasonable
mindsets will realize that science is partly an art and that art is partly a science. The con-
nection between the two is hardly undeniable and perhaps the distinctions come only from
the universities who separate them by college and degree.

The connections that music has to mathematics has been realized by both musicians and
mathematicians alike. Further, the physical significance has also been rigorously explored by
physicists and other scientists. There have been numerous books on the subject of Musical
Mathematics, and there have been some interesting recent work discovering the fundamen-
tals of these connections. In our own treatise, we will explore the basic ideas of Musical Set
Theory. In this approach, we explore four models that build on the ideas of how the set of
sounds is constructed.
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2 Modelling Sound

Just like complex mathematics, music is built from basic building blocks. In this case, music
can be overtly boiled down to be a set of sounds played in sequence. Therefore, we must
define this set of sounds so that we can use it to define what we know about music. One
might consider music to be sound that is of a particular flavor- notes of a set frequency
that yield endless amounts of expression. Yet this perspective underscores the value of a
general set of sounds. We must consider a version of sound that can explain most, if not
all sound phenomena. In step with asking about the basic properties of numbers, we can
also inquire into the basic properties of sound. Sound possesses four fundamental properties-
frequency, amplitude, spectrum and time. To the musician, these are pitch, loudness, timbre
and length, respectively. Since we take the mathematician’s point of view, we will consider
the scientific denominations for these properties.

We then can consider what we can do with these properties when constructing our set of
sounds. Our goal is to create a set of all sounds that not only embodies all of music, but also
contains every possible sound, both audible and inaudible. We can do this by considering
four models of sound that work the properties of sound into coherent ideas and formulations.
There are many models that can be created using these four properties so there is need to
eliminate some trivial and useless cases. We realize that using only one of the properties
described above is particularly inefficient when describing the set of all sounds since we
cannot make sense of one property without at least one more. For instance, we cannot
consider frequency alone as it may be able to describe the pitch of a sound but not necessarily
how that sound is interpreted physically. The physics of sound is ultimately what we must
rely on to construct our models sensibly. Of course, one can endlessly consider models of a
single variable, but one cannot construct anything meaningful without context. In our case,
the context is provided by considering other properties of sound. When considering a set of
all sounds, we must acknowledge the features that are inherent about it.

We attempt to do this in the four models we have built. Each model takes different
properties of sound into account which allows us to conclude which set is most sensible to
be used.

2.1 Model 1

The first model that we consider, has two properties of sound, that of frequency and am-
plitude. We will say that the set of sounds that we are trying to find is inherently two-
dimensional. Furthermore, we can claim that it must be a two-dimensional set of real
numbers so that we have a pair of numbers that represent frequency and amplitude. Math-
ematically, this has the form

S1 = R2 = {(fi, dBi) : fi, dBi ∈ R},

where S1 represents the first model for the set of all sounds, fi is the frequency, dBi is the
amplitude, and R is the set of real numbers. We also note that R2 is the two-dimensional
set of real numbers.

One might inquire into the reason that we label coordinates of R2 as fi and dBi where
any other variable could be sufficient. We note that we are considering physical phenomena

3



and so our labelling is purposeful. The labelling that we use is to make the connections
between the real numbers and physical quantities more apparent and gives the reader an
understanding of why and how these concepts that we will be presenting come about.

We will note that the amplitude and frequency of a sound is determined by external
considerations such as the physics of musical instruments and sound. When considering
these physical phenomena, we note that the amplitude cannot be less than zero. We say
that it is not physical for the amplitude to possess this property. However, one might consider
imaginary amplitudes or negative amplitudes in another treatise of Musical Set Theory.

We will also say that the frequency of a sound cannot be less than zero. However, a
consideration of negative or imaginary frequency will perhaps be useful in another approach
to this theory such as considerations in signal processing.

In this treatise of sound, we will also consider the fact that when frequency or amplitude
is zero, a sound makes no sound. That is, we do not consider it a sound when frequency or
amplitude is less than or equal to zero. This implies that the set of all sounds is made up
of sounds that are in our physical space. This space is inherently physical, i.e, it possesses
properties that exist naturally and exists even without the presence of ears to hear it. We
consider this space to be similar to space-time. For time still exists even if it has not
been experienced by the human or animal consciousness. So too do we consider seemingly
inaudible sounds with frequencies and amplitudes that tend towards infinity.

Therefore, we can redefine our set of all sounds to be the set of ordered pairs of positive
real numbers, i.e.,

S1 = R+2 = {(fi, dBi) : fi, dBi ∈ R+},

where R+ is the set of positive real numbers and R+2 is the two-dimensional set of positive
real numbers.

This definition of the set of all sounds provides us with our first model for the set of all
sounds. Now the question becomes, how can we compare elements in S1? We will first have
to classify two terms of comparison when working with sound. The first is comparing pitch.
We will say that a sound is lower-pitched if the frequency of one sound is less than that of
another sound. Likewise, we say that a sound is louder if the amplitude of one sound is
greater than that of another sound. Consider two sounds, s1 and s2 which are elements of
S1, i.e., they have the form s1 = (f1, dB1) and s2 = (f2, dB2). Then s1 is lower-pitched than
s2 if f1 is less than f2. Similarly, s1 is louder than s2 if dB1 is greater than dB2.

We note that this model of the set of all sounds considers two physical phenomena that
are connected to musical phenomena. That is, S1 possesses properties of “pitch” (frequency)
and “loudness” (amplitude). Because of this, we can consider more relations on our model
that fully encapsulates the comparison of two distinct sounds.

This results in the following relations that we can create when comparing two sounds.
Again consider s1 and s2 to be elements of S1 that are defined as s1 = (f1, dB1) and s2 =
(f2, dB2). Then we define the relation “=1” on S1 as follows: s1 =1 s2 if f1 = f2 and
dB1 6= dB2. Similarly, we define “=2” on S1 as follows: s1 =2 s2 if f1 6= f2 and dB1 = dB2.
We can also define the relation “<1” on S1 as follows: s1 <1 s2 if f1 < f2 and dB1 ≥ dB2.
Likewise, we define the relation “<2” on S1 as follows: s1 <2 s2 if f1 ≥ f2 and dB1 < dB2.

We note that the relations “=”, “<” and “≥” used above are the usual relations for the
set of two-dimensional real numbers. With these definitions, we are able to compare elements
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of S1 as we do so musically. We now consider extensions of this model in the forthcoming
frameworks.

2.2 Models 2 and 3

In these models, we define a third coordinate of Model 1 as part of our construction for the
set of all sounds. The first that we will consider is a set of all subsets of a given set. In this
case, the set is the set of harmonics. This can be interpreted as the spectrum of sound, or
timbre. That is, for each sound, we define a set of harmonics for that sound. Then the set
of all sounds can be defined as the set of ordered triplets so that we have a representation
of frequency, amplitude and set of harmonics, i.e.,

S2 = {(f, dB,Af ) : f, dB ∈ R+, Af = {kf : k ∈ Z+}} ⊆ R+2 × P(R+),

where P(R+) is the set of all subsets of the set of positive real numbers and Af is the set of
harmonics for the given frequency, where k is a positive integer and Z+ represents the set of
all positive integers. We note that S2 represents the second model of the set of all sounds.

For Model 3, we will use the property of time as the third coordinate for the set of all
sounds, i.e., length in music. Then the set of all sounds is given as the set of ordered triplets
so that we have a representation of frequency, amplitude and time. Mathematically, this is

S3 = R+2 × R≥0 = {(f, dB, t) : f, dB ∈ R+, t ∈ R≥0},

where S3 represents the third model of the set of all sounds, R≥0 is the set of nonnegative
real numbers. We have this as a possible value for t since we consider time to physically
start from zero.

However, there is a nuance with this model. To build anything meaningful from this set,
we must consider a function, µ that maps a time interval [a, b] to S1. That is, µ : [a, b]→ S1,
where µ(t) = (f(t), dB(t)). This will be crucial in deciphering sounds that occur one after
the other.

We can now say a few things about this model of the set of all sounds. For a sound,
s(t) = (f(t), dB(t), t) in S3, we say that s(t) is a constant sound if for all t in the interval
from a to b, the frequency and amplitude are constant. This can be condensed as a set
notated by Cs, where for each point in time, the frequency and amplitude remain the same.
That is, f(t) = f and dB(t) = dB for all t ∈ [a, b].

Then we say that Cs is transient if there is some value for t in which the frequency or
amplitude changes. Similarly, we can say that Cs is properly constant if Cs is a set with
infinitely many values. Of course, there is a nuance in the case that amplitude is dependent
on time. Here we can say that as time goes to infinity, the amplitude goes to zero. Note
that we are assuming that the strength of the amplitude decreases as time goes on which is
intuitive enough to realize from physical phenomena.

Now suppose that we have two sounds in the set of all sounds, s1 and s2 so that s1 =
(f1, dB1, t1) and s2 = (f2, dB2, t2). Then we say that s1 and s2 are simultaneous sounds if
t1 = t2. That is, s1 and s2 are “played” at the same time. Now if we consider time to
always be a constant value, we will realize that we are left with just variable frequency and
amplitude, i.e., a two-dimensional subset of S3. Therefore, when time is constant, we obtain
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S1, i.e., Model 1. This means that S3 is a generalization of S1.
We can also consider these two-dimensional subsets when we freeze time, that is, consider

a chosen time. Then we call the set of all sounds for this time to be a sound frame.

2.3 Model 4

In this final model that we will look at, we consider the combination of previous models.
Namely, we take all four attributes of what makes a sound- frequency, amplitude, spectrum
and time, and use them to construct our set of all sounds. Then the set of all sounds is given
as the set of ordered quadruples so that we have the representation of frequency, amplitude,
spectrum (harmonics) and time in each coordinate, i.e.,

S4 ⊂ R+2 × R≥0 × P(R+)

and S4 = {(fi, dBi, ti, Afi) : fi, dBi ∈ R+, ti ∈ R≥0, Afi ∈ P(R+)},

where S4 represents the fourth model of the set of all sounds and frequency, amplitude, set
of harmonics and time are the same as in previous models.

2.4 Comparing Models

In the above sections, we have defined four models for the set of all sounds. We now have the
ability to compare these models to see which is the best to use to build further constructions
and fit reality most accurately.

The first model provides us with two attributes of sound- frequency and amplitude. These
correspond to pitch and loudness, respectively. This is a good way to describe sound two-
dimensionally, and provides us with the ability to form sounds with harmonics. However,
this model does not allow for new sounds to be uniquely heard. That is, we can only append
the array of sounds that exist in our set of sounds. We cannot play music, and further, we
cannot hear distinction. With this in mind, the low-dimensional space that S1 exists in is
useful to define functions and build algebraic structures in.

In the second model, we define three attributes, frequency, amplitude and spectrum.
That is, we are implementing the set of harmonics for a given frequency f . This is helpful
since we do not need to use a function to define the harmonics. Rather, we use the set of all
subsets of the positive real numbers, and use them as an attribute for the set of all sounds.
However, like Model 1, it does not provide a consecutive motion of sound, and distinction is
not necessarily clear.

In Model 3, we introduce time as the third attribute of the set of sounds. This allows us
to have sounds that are heard consecutively and uniquely. It also allows us the opportunity
to look at singular time frames which mimic Model 1 and define algebraic structure for the
set of harmonics. It is this set that we will be considering to be S, our general set of all
sounds. This set provides the most flexibility and ease of use for defining algebraic structure.

The final model provides us with all the attributes of what makes a sound. That is, it
gives us the pitch, loudness, duration and timbre. Timbre is an important feature of sound
as it provides the distinction we need between notes from different instruments and defines
a set of harmonics. However, we believe that although the timbre is a fundamental part
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of musical sound, we can reconstruct it using the three other properties of sound given by
time, frequency and amplitude. We also note that in order to define distance on the set of
all sounds, we cannot have the set of all subsets along with sets of size much much less than
the set of all subsets of those sets. We note this importance since we will use distances to
define and build musical constructions.

3 Simple Mathematical Constructions

Now that we have these models defined, we can consider simple mathematical constructions.
These constructions will be considered only for Model 1, i.e, S1 since it is the simplest to
build from basic ideas in mathematics. By just considering frequency and amplitude, we can
form the fundamentals to then consider for other models.

Often in music, the frequency or pitch of a sound is varied without any concern for the
amplitude. These are considered in harmonics, octaves and other musical constructions. We
begin with simple mappings, that is, functions to vary the frequency by a fixed real number.

3.1 Mappings

The first function that we consider takes a sound from S1 and multiplies the frequency by a
fixed real number given by c which produces another sound. That is, we map a sound into
another sound. In other words, if s1 is a sound in S1 so that s1 = (f1, dB1) and a positive
real number c, we define gc : S1 → S1 as follows:

gc(s1) = (cf1, dB1).

We say that gc form a family of functions in which we call frequency variant.
Now within our set of all sounds, we realize that there is a subset that contains sounds

that are audible to the human ear. We will consider this subset to be SH . Clearly, the size
of SH is smaller than S1 and we call it the set of all audible sounds when the frequency
and amplitude are within the range of common human hearing. Further, to generalize this
realization, we can say that there are other subsets of S1 that have any form containing
inaudible or audible sounds or both. We call these subsets soundscapes. These soundscapes
may be useful for signal processing and other constructions of sound. However, for simplicity,
we will only consider the soundscape of audible sounds.

This prompts the idea to start considering music within SH . The most basic idea in
music is that of a note. We can consider what this means generally, but to keep the trend
of considering only audible sounds, we consider notes that are commonly known in music.
For a commonly known frequency, f , a note of this frequency is a sound si = (fi, dBi) so
that fi = f . That is, we have a sound where the amplitude can change, but the frequency
remains the same. That is, the pitch is fixed with the loudness able to fluctuate. We note
that this means two sounds with the same frequency but differing amplitudes results in two
different notes. The set of all notes of frequency f is given by Nf which is equal to the set
{(f, dBi) : dBi ∈ R+}, where dBi is a positive real number. We now realize that Nf is what
we typically know as a musical note. That is, a musical note is of one frequency but can
have an amplitude that is any positive real number.
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Then we obtain a set of all commonly known notes in music that are formed using Nf .
We can now define functions using this notation for notes that are functions of the family
of functions we defined earlier as frequency variant. The first function to consider is that of
harmonics. We will let gh denote our function that is a mapping from all audible sounds to all
audible sounds. That is, gh : S→ S where the frequency is multiplied by a positive integer.
We realize that this will form a set of harmonics for a given frequency. Mathematically, this
is interpreted as

gh(Nf ) = (h · f, dBi),

where h is a positive integer and dBi is the amplitude contained within the set of positive
real numbers. We call this family of functions, the family of harmonic functions. The range
of gh is realized to be the set of harmonics for a given note. We now build other simple
mathematical constructions using S1.

3.2 Operations

When considering operations, the first consideration is an “addition of sounds”. What this
means is simply having two notes being “played” at the same time. In this model, everything
is in the same time frame, since we do not consider it, but we would like to combine sounds
rather than having one element being played. To define an addition, we need to consider
the union of two sounds. This is simply two sounds in one set together. This representation
is the formal expression of having one of multiple sounds. Under normal addition in R2, we
obtain the addition of coordinates. This does not make sense in our context of combining
sounds. For two frequencies played individually does not imply that the addition of those
frequencies is perceived to be the same or even is the same. Therefore, we must define
the union of two sounds to be the first operation on S1. However, in order to have this
operation, we must consider the set of all subsets of S1 and subsequent subsets of this set to
be individual sounds.

That is, we consider the set of all finite subsets of S. Meaning that this subset does not
have infinitely many sounds contained within it. This can be represented mathematically as
S = {A ⊂ S : A is finite}. Then we can consider the operation, ∪ on S with two subsets
of S, s′1 and s′2 that combines the elements from each subset. This will give us the set that
contains s′1 and s′2. That is, s′1 ∪ s′2 = {s′1, s′2}.

We can now redefine µ as a function of time that maps a point in a time interval to the
set S. That is, µ : [a, b] → S so that µ(t) = {s′1(t), ..., s′n(t)}. We note that µ(t) = A(t),
where A is a finite subset of S.

3.3 Semigroups

The last simple mathematical construction that we will consider is that of semigroups. A
semigroup is just a set with an operation that is associative. Associativity just means that
rearranging parenthesis in an expression will not change the end result. For example, in the
set of real numbers, addition is an associative operation. From basic theory, we know that
the operation, ∪, is an associative operation. Therefore, S along with ∪ is a semigroup.

However, we can extend this idea further by considering other properties of the operation,
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∪. We know that ∪ is commutative (changing the order of the operands does not change
the result) and the identity element (leaves an element unchanged when combined with the
identity) is the empty set. The empty set is a set that contains nothing and notated as φ.
So the union of the empty set with any element of S produces that same element. That is,
s′ in S returns s′ when s′ ∪ φ.

Given the fact that ∪ is associative, commutative and there exists an identity element for
the semigroup, we obtain the fact that S along with ∪ forms a semilattice with identity. We
can now describe a semigroup homomorphism using the previously defined function, gc that
multiplies the first coordinate of a sound by a real number c. A homomorphism is simply
a mapping between two sets that preserves the preserves the operations on that set. In the
context of our semilattice, we redefine gc as φc as a function from S to S so that for s′ in S
we have

φc(s
′) = {(c · f, dB) : (f, dB) ∈ s′}.

One can easily confirm that this is a homomorphism on S.

4 Constructing Music

The most basic musical construction that we can attempt to build is one that is well-known
and used often, the musical staff, i.e., sheet music. Any musician or mathematician with a
keen eye will notice that there is much structure built into the staff and for good reason. The
staff provides a structure that is consistent and well-defined. The question arises, why try
to build a staff mathematically when it already exists and its structure is well-known? The
answer to this question lies in the fact that we will be able to build this using our defined set
of all sounds, providing evidence that it is a useful and workable set. It is also good practice
to be able to build something that is already known based on the mathematical fundamentals
behind it. Further, since we are reverse-engineering the staff, we can then observe what other
constructions we can make from our set of sounds that are more generalized.

4.1 Metric

Since we define frequency and amplitude as elements of the positive real numbers, we can
define a Euclidean metric, i.e., the typical distance function that exists for real numbers.
However, when considering the third coordinate of the set of all sounds, time, we must
recognize three features of sheet music. These are note length, time signature and tempo.
To measure time, we must take these three into consideration. In order to model sheet
music, we will notice that each note is characterized as a discrete event in continuous time.
Therefore, we must model our function after this. Because of this, there is also is a possible
need for introduction of discrete-event continuous stochastic processes, but this is saved for
an exploration later on. A good treatise of this has been done by Iannis Xenakis in his book,
Formalized Music.

Because of these considerations with discrete events, we can have two distance functions.
The first simply treats time as a subset of real numbers greater than or equal to zero. The
second is using our µ function that we defined earlier that maps a time interval onto S1.

For our other variables, amplitude and frequency, we can simply use a Euclidean metric
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as mentioned earlier. The distance between two amplitudes, dB1 and dB2, is just a positive
real number and the distance between two frequencies is also a positive real. We can now
generalize our metric that describes the distance between two sounds. For sounds s1, s2 in
S, where s1 = (f1, dB1, t1) and s2 = (f2, dB2, t2) we have

d(s1, s2) = c1|f1 − f2|+ c2|dB1 − dB2|+ c3|t1 − t2|,

where c1, c2, c3 are real constants. Then we can also define a metric with µ. That is, for
functions µ1 and µ2, we have

d(µ1, µ2) =

∫ b

a

d(µ1(t), µ2(t)) dt

and
d(s1, s2) = c1|f1 − f2|+ c2|dB1 − dB2|,

where c1, c2 are real constants. Then note that we have two distance functions when we
consider µ that describe distance in S.

4.2 Sheet Music

Given this defined metric, we can now define what we know as common musical notation. We
say that if |f1−f2| is equal to the distance between two consecutive commonly known notes,
then the metric is a normal notation metric. However, there is now the need for diatonic
theory. The common distance between consecutive notes in an octave scale is 21/12. That is,
if f1 and f2 are frequencies for consecutive common notes, then the distance between them
is given by d(f1, f2) = |f1 − f2| = 21/12. Using this distance, we can construct sheet music.

In music, the distance between notes is usually represented as lines and spaces between
the lines. In each line or space, a note is placed that describes the pitch. So too, the
distance function that we consider can create a line in space for every note that is 21/6 apart.
Musically, this is considered a whole-step while distances of 21/12 are known as half-steps.
Then using the distance function for time, we can define commonly known time signatures,
note lengths and tempo.

Along with variables of time, we can manipulate the amplitude and frequency to obtain
different characteristics of sheet music. For instance, we can create a function that increases
the amplitude gradually as time goes on and notes are played. Musically, this is of course
known as a crescendo. These and other extensions will be discussed in the next section.

5 Discussion and Conclusions

We have introduced four models to build a framework for the set of all sounds. We showed
that it resembles sets that are commonly used in mathematics and shares properties of sound.
We also built simple constructions to exhibit the simplicity in which our models are built.
From there, we built a distance function that allows us to build sheet music. In Model 1,
we considered frequency and amplitude which we then used to create simple mathematical
constructions. In Model 2, we established the set of harmonics for each frequency in the set
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of all sounds. The model that we accepted as our resolute was Model 3 which contained in
addition to frequency and amplitude, time. This model, we argue provides the most logical
and realistic framework for building the set of all sounds. We realize that it contains the
ability to represent the set of harmonics using functions rather than a fourth coordinate.
Finally, the fourth model presented all attributes of sound into one set. Like our argument
for why Model 2 is not the best candidate, Model 4 shares the same redundancy problems
that are present in Model 2.

The final set of all sounds is therefore used in the creation of our distance function. We
note that there are many extensions that can be done mathematically to recreate common
sheet music notations. This can be done by considering what the notation in the score
does to a particular note. We can question if it changes the pitch, loudness or length of
the note. This then allow us to interpret the notation into terms that we can understand
mathematically and therefore result in typical musical notation.

With this in mind, we can also consider other generalizations of sheet music. For instance,
suppose that we set the distance function so that we consider other constant variables for
frequency. That is, instead of using 21/12, we can consider any other positive real number.
This would then result in a new form of sheet music that has its own properties of sound
and music. There is a nuance in the fact that we do not just consider audible sound when we
talk about sheet music, we also rely that what we hear as a result to be music. This means
that our generalization for all forms of sheet music may only have a few cases in which the
music is pleasant and interesting. However, we nonetheless can obtain a generalization for
this for other soundscapes with other metrics.

These can possibly be explored using digital signal processing which gives the user the
ability to hear what another construction of sheet music would sound like. Furthermore,
this method may not be as fruitful when considering soundscapes with inaudible sounds.
However, mathematical formulations can still be obtained and so digital signal processing
would still merit results in this area of exploration.
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