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1 An Introduction to Elliptic Curves

Elliptic curves comprise a vast range of subjects and ideas and so in this description, we will
expose the most basic properties and describe the interesting mathematical structure. We
will start by focusing on cubic curves over rational numbers, and eventually describe what
an elliptic curve is. This will allow us to dissect the fundamental ideas of elliptic curves by
simplifying it to a description of cubic curves. We will then be able to construct what elliptic
curves are, based on the understanding and framework of cubic curves.

1.1 Cubic Curves Over Rational Numbers

We begin with a basic definition about cubic polynomials.

Definition (Cubic Polynomial). A cubic polynomial is a polynomial of the form

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0. (1)

If the coefficients of (1) are rational, we say that it is a rational cubic. This will be the
focus for our description of cubic curves.

In general, we say that the solutions of a polynomial of finite degree is a curve in the
plane. Linear equations, polynomials with degree 1, describe lines in the plane. Likewise,
for quadratic polynomials with degree 2, solutions are conic sections in the plane. We next
turn to cubic polynomials with degree 3. We call the solutions of these polynomials cubic
curves.

Definition (Cubic Curves). A cubic curve is the graph of the solutions of a polynomial with
degree 3.

We will illustrate this with a simple example of a rational cubic (cubic polynomial with
rational coefficients) which was plotted using Mathematica.
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Figure 1: Plot of y = 1
2
x3 + 4

3
x2.

Example 1.1. Consider the cubic polynomial given by

y =
1

2
x3 +

4

3
x2.

Plotting this gives the curve in Figure 1 below.

The main concern with cubic equations is being able to find solutions (points on the
curve) to them in certain fields. For instance, suppose we want to find rational solutions to
the equation given in Example 2.1. To do this for cubics of the form y3−x3 = c, suppose we
have found one rational solution to it, namely, (x, y) with x and y both rational and y 6= 0.
Then we may apply the duplication formula, which was first introduced by Claude Bachet
in 1621 [1]. This is a pair that can determine another rational point given one has already
been found. The formula is given by(

x4 − 8cx

4y2
,
−x6 − 20cx3 + 8c2

8y3

)
, (2)

where c is an integer and not equal to 1 or -432.

It follows from (2) that if we had one rational solution to a given cubic equation of the
form y3 − x3 = c, we can generally find a second solution, namely by using this formula.
Likewise, we can obtain a third, fourth, and fifth solution. So given two rational solutions,
we can obtain a third solution in addition to the previous two. The duplication formula
provides the motivation to find more rational solutions for general cubics. That is, we want
to see if we can find the next solution to a given cubic provided we already have one or two
solutions. This then has a direct geometric interpretation. That is, if P and Q were rational
solutions to a cubic equation, then we can form a line between the two points. This line
will then produce a third point at the intersection between the line and another point on
the cubic curve. We call this line a rational line. The third point of intersection is typically
labelled as P ∗Q. We also note that if we only had one rational solution, i.e., point, we can
obtain a second point by drawing the line tangent to the point and finding its intersection
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with the curve [3]. One way to think about this is to imagine that the line passes through
the same point twice and intersects to find a third point (in our case second). Using the
curve in Example 2.1, we can apply this geometric principle. This is shown in Figure 2.
Likewise, we may also plot the case in which we only have one rational point, P , as shown

Figure 2: Intersection of Line Connecting P and Q with Curve given in Example 2.1.

in Figure 3.

Figure 3: Given point P , we can find another point on the curve, P ∗ P .

1.2 The Group Law

The duplication formula and its corresponding geometrical interpretations provide the op-
portunity to explore what is understood about generating rational points. That is, we can
ask questions about the algebraic structure of the composition law given by ‘∗’ and what it
does to the set of rational points on the curve [1]. When considering the underlying struc-
ture, it is best to start with simple constructions. One of the simplest algebraic structures
is a group. We start with its definition.
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Definition (Group). A group is a set G with one binary operation, · , that satisfies the
following properties [2]:

• For all a, b, c ∈ G, a · (b · c) = (a · b) · c. (Associative Law)

• There exists e ∈ G such that for all a ∈ G, a · e = e · a = a. (Existence of an Identity)

• For all a ∈ G, there exists b ∈ G such that a · b = e = b · a. (Existence of an Inverse)

The binary operation in the definition above is typically called the group law. Forming
a group with the properties that have since been described will allow us to push the ideas
further and aid our description of elliptic curves. Then by some clever manipulations, a
group can be obtained using a group law given by an operation ‘+’.

This operation can be described as a type of addition of cubic curves. That is, given P,Q
and P ∗Q, we can obtain P + Q. However, we have a complication. If P,Q and P ∗Q are
given rational points on a cubic curve, then there are no other compositions that are able to
be formed between the points using ‘∗’ since no line can intersect more than three points in
a cubic. To get around this complication, we define an identity O to be the rational point
in which we connect to the rational point P ∗ Q. This gives us a third intersection point
which we define to be P + Q, where ‘+’ is the group law. This is best understood with a
visualization since it is inherently geometric. Then we can consider the curve in Example
2.1. We will use the identity to illustrate the group law in Figure 4. From the plot, we can

Figure 4: Illustrating the group law, ‘+’.

observe some basic principles about the definition of the group law. That is, from Figure 4,
we can obtain the following relation

P + Q = O ∗ (P ∗Q). (3)

Now that we have this group law defined, we can confirm that the set of rational points along
with ‘+’ is a group. This process includes confirming each condition given in the definition
of a group. This can be done with the given group and composition laws and some geometric
manipulation.
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1.3 Mordell’s Theorem and Elliptic Curves

The construction and confirmation of this group now allows us to build up our description
of cubic curves even further. As above, we have defined the group as a set of rational points
on any given cubic. That is, given a group of rational points of a cubic, we are able to make
conclusions about other properties of the curve. In particular, we obtain Mordell’s Theorem.

Theorem (Mordell’s Theorem). If a non-singular rational plane cubic curve has a rational
point, then the group of rational points is finitely generated [1].

Mordell’s Theorem essentially says that given a particular finite set of rational points on
a cubic curve, all other rational points on that curve can be obtained by repeated addition.

In proving Mordell’s Theorem, we reduce the form of a general cubic into a so-called
Weierstrass normal form. A cubic equation in this form is given by

y2 = f(x) = x3 + ax2 + bx + c. (4)

Solving this equation would result in at most three roots. If these roots are distinct, we
obtain the definition of an elliptic curve.

Definition (Elliptic Curve). An elliptic curve is a cubic curve in normal form such that the
roots are distinct.

We note that these roots can be complex. Then there is the issue of singularity. This
involves the question of how many real roots there are and how many of them repeat. If a
root repeats, the cubic curve is said to be singular. But given that each root is distinct, we
have a non-singular cubic curve, i.e., an elliptic curve.

The discovery of this property and formulation of cubic curves allowed mathematicians
to explore uncharted territory and begin to solve long-standing problems in mathematics.
A famous example is Andrew Wiles’s proof of Fermat’s Last Theorem, which makes use of
elliptic curves.
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