Introducing Four Models for the Set of All Sounds and Constructing Common Musical Notation Using Them Exploring Mathematics and Music

Israel Ben Aron[†] under the supervision of Boris Datskovsky[†]

† Department of Mathematics

November 5th, 2021

Motivations

Lack of Academic Work in Musical Set Theory

Motivations

- Lack of Academic Work in Musical Set Theory
- Scientific Curiosity

Motivations

- Lack of Academic Work in Musical Set Theory
- Scientific Curiosity
- An Exercise in Mathematics

Models of Sounds

In each model, \mathbb{S}_i represents the set of all sounds that corresponds to the model i.

Models of Sounds

In each model, \mathbb{S}_i represents the set of all sounds that corresponds to the model i.

Model 1

Define \mathbb{S}_1 to be the set of ordered pairs of positive real numbers with frequency f and amplitude dB. That is,

$$\mathbb{S}_1 = \{ (f, dB) : f, dB \in \mathbb{R}^+ \} = \mathbb{R}^{+2}.$$

Models of Sounds

In each model, \mathbb{S}_i represents the set of all sounds that corresponds to the model i.

Model 1

Define \mathbb{S}_1 to be the set of ordered pairs of positive real numbers with frequency f and amplitude dB. That is,

$$\mathbb{S}_1 = \{ (f, dB) : f, dB \in \mathbb{R}^+ \} = \mathbb{R}^{+2}.$$

Model 2

Define \mathbb{S}_2 to be the set of ordered triplets with representations for frequency, amplitude and set of harmonics. That is,

$$\mathbb{S}_2 = \{(f, dB, A_f) : f, dB \in \mathbb{R}, A_f = \{kf : k \in \mathbb{Z}^+\}\} \subseteq \mathbb{R}^{+2} \times \mathcal{P}(\mathbb{R}^+).$$

Models of Sounds (continued)

Model 3

Define \mathbb{S}_3 to be the set of ordered triplets with representations for frequency, amplitude and time. That is,

$$\mathbb{S}_3 = \{(f, dB, t) : f, dB \in \mathbb{R}^+, t \in \mathbb{R}_{\geq 0}\} = \mathbb{R}^{+2} \times \mathbb{R}_{\geq 0}.$$

Models of Sounds (continued)

Model 3

Define \mathbb{S}_3 to be the set of ordered triplets with representations for frequency, amplitude and time. That is,

$$\mathbb{S}_3 = \{(f, dB, t) : f, dB \in \mathbb{R}^+, t \in \mathbb{R}_{\geq 0}\} = \mathbb{R}^{+2} \times \mathbb{R}_{\geq 0}.$$

Model 4

Define \mathbb{S}_4 to be the set of ordered quadruples with representations for frequency, amplitude, time and set of harmonics (spectrum). That is,

$$\mathbb{S}_4 = \{(f, dB, t, A_f) : f, dB \in \mathbb{R}, t \in \mathbb{R}_{\geq 0}, A_f \in \mathcal{P}(\mathbb{R}^+)\}.$$

Some Simple Properties

Frequency Variant Family of Functions

We construct the following mapping for Model 1 on \mathbb{S}_1 : Let $s \in \mathbb{S}_1$ such that s = (f, dB). Then we define $g_c : \mathbb{S}_1 \to \mathbb{S}_1$ as follows:

$$g_c(s) = (cf, dB),$$

where c is a positive real number.

Some Simple Properties

Frequency Variant Family of Functions

We construct the following mapping for Model 1 on \mathbb{S}_1 : Let $s \in \mathbb{S}_1$ such that s = (f, dB). Then we define $g_c : \mathbb{S}_1 \to \mathbb{S}_1$ as follows:

$$g_c(s) = (cf, dB),$$

where c is a positive real number.

Define the power set of \mathbb{S}_1 to be \mathcal{S} with the condition that the subset is finite. That is, $\mathcal{S} = \{A \subset \mathbb{S}_1 : |A| < \infty\}.$

Some Simple Properties

Frequency Variant Family of Functions

We construct the following mapping for Model 1 on \mathbb{S}_1 : Let $s \in \mathbb{S}_1$ such that s = (f, dB). Then we define $g_c : \mathbb{S}_1 \to \mathbb{S}_1$ as follows:

$$g_c(s) = (cf, dB),$$

where c is a positive real number.

Define the power set of \mathbb{S}_1 to be \mathcal{S} with the condition that the subset is finite. That is, $\mathcal{S} = \{A \subset \mathbb{S}_1 : |A| < \infty\}.$

Combination of Sounds in Model 1

Take two subsets of S, say S_1, S_2 such that $S_1 = \{s_{i_1}, ..., s_{i_k}\}$ and $S_2 = \{s_{j_1}, ..., s_{j_n}\}$. Then define the sound $S_1 \cup S_2$ as follows:

$$S_1 \cup S_2 = \{S_1, S_2\}.$$

Note there is an abuse of notation.

Musical Constructions

Metric on Model 3

We define the metric on \mathbb{S}_3 for sounds s_i , s_j so that $s_i = (f_i, dB_i, t_i)$ and $s_j = (f_j, dB_j, t_j)$ as follows:

$$d(s_i, s_j) = c_1|f_i - f_j| + c_2|dB_i - dB_j| + c_3|t_i - t_j|,$$

where c_1, c_2, c_3 are positive real numbers.

Musical Constructions

Metric on Model 3

We define the metric on \mathbb{S}_3 for sounds s_i , s_j so that $s_i = (f_i, dB_i, t_i)$ and $s_j = (f_j, dB_j, t_j)$ as follows:

$$d(s_i, s_j) = c_1|f_i - f_j| + c_2|dB_i - dB_j| + c_3|t_i - t_j|,$$

where c_1, c_2, c_3 are positive real numbers.

Normal Notation Metric

If $|f_i - f_j| = 2^{1/12}$, then we obtain the typical structure for sheet music.

Musical Constructions

Metric on Model 3

We define the metric on \mathbb{S}_3 for sounds s_i , s_j so that $s_i = (f_i, dB_i, t_i)$ and $s_j = (f_j, dB_j, t_j)$ as follows:

$$d(s_i, s_j) = c_1|f_i - f_j| + c_2|dB_i - dB_j| + c_3|t_i - t_j|,$$

where c_1, c_2, c_3 are positive real numbers.

Normal Notation Metric

If $|f_i - f_j| = 2^{1/12}$, then we obtain the typical structure for sheet music.

Generalized Sheet Music

Define a fixed frequency metric, so that $|f_i - f_j| = c$ for some fixed value c.

References

- Benson, David J. *Music: A Mathematical Offering*. Cambridge University Press, Cambridge, 2007.
- Fletcher, Neville H. and Rossing, Thomas D.. *The Physics of Musical Instruments*. Springer-Verlag, New York, 1991.
- Johnson, Timothy A. Foundations of Diatonic Theory: A Mathematically Based Approach to Music Fundamentals. The Scarecrow Press, Maryland, 2008.
- Schmidt-Jones, Catherine and Jones, Russell. *Understanding Basic Music Theory*. Connexions, Texas, 2007.
- Rienstra, S.W. and Hirschberg, A. *An Introduction to Acoustics*. Eindhoven University of Technology, Eindhoven, 2016.

For more information, please visit: ibawebsite.netlify.app

Acknowledgements

- CARAS Program
- Dr. Kerry Milch and the staff in Undergraduate Studies
- Dr. Boris Datskovsky
- Dr. Mitrea and the Mathematics Department
- Dr. Jim Napolitano
- Seth Knopp and Yellow Barn